C-Linker Accounts for Differential Sensitivity of ERG1 and ERG2 K+ Channels to RPR260243-Induced Slow Deactivation.

نویسندگان

  • Alison Gardner
  • Michael C Sanguinetti
چکیده

Compounds can activate human ether-à-go-go-related gene 1 (hERG1) channels by several different mechanisms, including a slowing of deactivation, an increase in single channel open probability, or a reduction in C-type inactivation. The first hERG1 activator to be discovered, RPR260243 ((3R,4R)-4-[3-(6-methoxyquinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid) (RPR) induces a pronounced, voltage-dependent slowing of hERG1 deactivation. The putative binding site for RPR, previously mapped to a hydrophobic pocket located between two adjacent subunits, is fully conserved in the closely related rat ether-à-go-go-related gene 2 (rERG2), yet these channels are relatively insensitive to RPR. Here, we use site-directed mutagenesis and heterologous expression of channels in Xenopus oocytes to characterize the structural basis for the differential sensitivity of hERG1 and rERG2 channels to RPR. Analysis of hERG1-rERG2 chimeric channels indicated that the structural determinant of channel sensitivity to RPR was located within the cytoplasmic C-terminus. Analysis of a panel of mutant hERG1 and rERG2 channels further revealed that seven residues, five in the C-linker and two in the adjacent region of the cyclic nucleotide-binding homology domain, can fully account for the differential sensitivity of hERG1 and rERG2 channels to RPR. These findings provide further evidence that the C-linker is a key structural component of slow deactivation in ether-à-go-go-related gene channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of ERG2 potassium channels by the diphenylurea NS1643.

Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear. The lack of functional information is at least partly due to the lack of specific pharmacological...

متن کامل

Structural basis for ether-a-go-go-related gene K+ channel subtype-dependent activation by niflumic acid.

Niflumic acid [2-((3-(trifluoromethyl)phenyl)amino)-3-pyridinecarboxylic acid, NFA] is a nonsteroidal anti-inflammatory drug that also blocks or modulates the gating of a wide spectrum of ion channels. Here we investigated the mechanism of channel activation by NFA on ether-a-go-go-related gene (ERG) K(+) channel subtypes expressed in Xenopus laevis oocytes using two-electrode voltage-clamp tec...

متن کامل

A single amino acid difference between ether-a-go-go- related gene channel subtypes determines differential sensitivity to a small molecule activator.

Activators of human ether-a-go-go-related gene 1 (hERG1) channels, such as (3R,4R)-4-[3-(6-methoxy-quinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluoro-phenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid (RPR260243), reverse the effect of hERG1 blockers and shorten the duration of cardiac action potentials. RPR260243 (RPR) slows the rate of deactivation and shifts the voltage dependence of channel ...

متن کامل

Direct interaction of eag domains and cyclic nucleotide–binding homology domains regulate deactivation gating in hERG channels

Human ether-á-go-go (eag)-related gene (hERG) potassium channels play a critical role in cardiac repolarization and are characterized by unusually slow closing (deactivation) kinetics. The N-terminal "eag" domain and a C-terminal C-linker/cyclic nucleotide-binding homology domain (CNBHD) are required for regulation of slow deactivation. The region between the S4 and S5 transmembrane domains (S4...

متن کامل

Structural basis of action for a human ether-a-go-go-related gene 1 potassium channel activator.

Activation of human ether-a-go-go-related gene 1 (hERG1) K(+) channels mediates cardiac action potential repolarization. Drugs that activate hERG1 channels represent a mechanism-based approach for the treatment of long QT syndrome, a disorder of cardiac repolarization associated with ventricular arrhythmia and sudden death. Here, we characterize the mechanisms of action and the molecular determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2015